12,071 research outputs found

    High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism

    Get PDF
    We demonstrate theoretically a scheme for cluster-state generation, based on atomic ensembles and the dipole-blockade mechanism. In the protocol, atomic ensembles serve as single-qubit systems. Therefore, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultracold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer

    The Diffusion of Energy Efficiency in Building

    Get PDF
    We analyze the diffusion of buildings certified for energy efficiency across US property markets. Using a panel of 48 metropolitan areas (MSAs) observed over the last 15 years, we model the geographic patterns and dynamics of building certification, relating industry composition, changes in economic conditions, characteristics of the local commercial property market, and the presence of human capital, to the cross-sectional variation in energy-efficient building technologies and the diffusion of those technologies over time. Understanding the determinants and the rate at which energy-efficient building practices diffuse is important for designing policies to affect resource consumption in the built environment.

    The influence of forward-scattered light in transmission measurements of (exo)planetary atmospheres

    Full text link
    [Abridged] The transmission of light through a planetary atmosphere can be studied as a function of altitude and wavelength using stellar or solar occultations, giving often unique constraints on the atmospheric composition. For exoplanets, a transit yields a limb-integrated, wavelength-dependent transmission spectrum of an atmosphere. When scattering haze and/or cloud particles are present in the planetary atmosphere, the amount of transmitted flux not only depends on the total optical thickness of the slant light path that is probed, but also on the amount of forward-scattering by the scattering particles. Here, we present results of calculations with a three-dimensional Monte Carlo code that simulates the transmitted flux during occultations or transits. For isotropically scattering particles, like gas molecules, the transmitted flux appears to be well-described by the total atmospheric optical thickness. Strongly forward-scattering particles, however, such as commonly found in atmospheres of Solar System planets, can increase the transmitted flux significantly. For exoplanets, such added flux can decrease the apparent radius of the planet by several scale heights, which is comparable to predicted and measured features in exoplanet transit spectra. We performed detailed calculations for Titan's atmosphere between 2.0 and 2.8 micron and show that haze and gas abundances will be underestimated by about 8% if forward-scattering is ignored in the retrievals. At shorter wavelengths, errors in the gas and haze abundances and in the spectral slope of the haze particles can be several tens of percent, also for other Solar System planetary atmospheres. We also find that the contribution of forward-scattering can be fairly well described by modelling the atmosphere as a plane-parallel slab.Comment: Icarus, accepted for publicatio

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure

    Wet chemical etching mechanism of silicon

    Get PDF
    We review what can be said on wet chemical etching of single crystals from the viewpoint of the science of crystal growth. Starting point is that there are smooth and rough crystal surfaces. The kinetics of smooth faces is controlled by a nucleation barrier that is absent on rough faces. The latter therefore etch faster by orders of magnitude. The analysis of the diamond crystal structure reveals that the {111} face is the only smooth face in this lattice-other faces might be smooth only because of surface reconstruction. In this way we explain the minimum of the etch rate in KOH:H2O in the <001> direction. Two critical predictions concerning the shape of the minimum of the etch rate close to <001> and the transition from isotropic to anisotropic etching in HF:HNO3 based solutions are tested experimentally. The results are in-agreement with the theor

    Information gap for classical and quantum communication in a Schwarzschild spacetime

    Get PDF
    Communication between a free-falling observer and an observer hovering above the Schwarzschild horizon of a black hole suffers from Unruh-Hawking noise, which degrades communication channels. Ignoring time dilation, which affects all channels equally, we show that for bosonic communication using single and dual rail encoding the classical channel capacity reaches a finite value and the quantum coherent information tends to zero. We conclude that classical correlations still exist at infinite acceleration, whereas the quantum coherence is fully removed.Comment: 5 pages, 4 figure

    Effects of self-phase modulation on weak nonlinear optical quantum gates

    Full text link
    A possible two-qubit gate for optical quantum computing is the parity gate based on the weak Kerr effect. Two photonic qubits modulate the phase of a coherent state, and a quadrature measurement of the coherent state reveals the parity of the two qubits without destroying the photons. This can be used to create so-called cluster states, a universal resource for quantum computing. Here, the effect of self-phase modulation on the parity gate is studied, introducing generating functions for the Wigner function of a modulated coherent state. For materials with non-EIT-based Kerr nonlinearities, there is typically a self-phase modulation that is half the magnitude of the cross-phase modulation. Therefore, this effect cannot be ignored. It is shown that for a large class of physical implementations of the phase modulation, the quadrature measurement cannot distinguish between odd and even parity. Consequently, weak nonlinear parity gates must be implemented with physical systems where the self-phase modulation is negligable.Comment: 7 pages, 4 figure

    Super-resolving multi-photon interferences with independent light sources

    Full text link
    We propose to use multi-photon interferences from statistically independent light sources in combination with linear optical detection techniques to enhance the resolution in imaging. Experimental results with up to five independent thermal light sources confirm this approach to improve the spatial resolution. Since no involved quantum state preparation or detection is required the experiment can be considered an extension of the Hanbury Brown and Twiss experiment for spatial intensity correlations of order N>2
    • …
    corecore